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Most accident prediction models belong to the count data regression
models, in particular the negative binomial model, which assumes all
data or cases are statistically independent. This assumption, how-
ever, may be violated when repeated observations over multiple
periods (e.g., yearly accident counts) at the same locations (e.g.,
intersections and road segments) are used as independent cases in
model calibration. A common solution for avoiding this problem is
to aggregate data from multiple periods for each location into a sin-
gle observation (e.g., combining monthly data into yearly data or
combining multiyear observations into a single-year average). This
aggregation treatment addresses the issue of data correlation but will
likely result in loss of information and reduction in sample size (3).

This paper introduces a multilevel regression approach to captur-
ing the clustered nature of some accident data. The investigation
focuses on two specific questions: (a) What is the impact of using
disaggregate modeling approach? and (b) Do multilevel models give
substantively different results than a single-level model? A data set
compiled for winter road safety is used to examine these questions
(4, 5). This accident database includes hourly accident counts for
individual winter snowstorms on four highway sections in Ontario.
This unique data structure allows development and comparison of
models of two levels of aggregation: aggregated event-based and
disaggregated hourly based models. The hourly observations are
used to calibrate and compare single-level and multilevel models.

LITERATURE REVIEW

Road accident modeling has been an area of intensive research in
the past few decades. A large number of statistical models have been
developed and tested for their suitability to address a variety of com-
plex issues related to accident data. The general consensus is that the
negative binomial (NB) distribution is adequate in most cases for
modeling road accident counts because of its ability to capture the
common nature of overdispersion in accident data (4–20).

The NB model structure has been further extended by many
researchers to improve its explanatory power and modeling flexibil-
ity. For example, a notable extension is the generalized negative bino-
mial (GNB) model, which incorporates a varying dispersion parameter
that is a function of a set of covariates. This makes the model capable
of controlling for more heterogeneity than does the NB model. It has
been shown that use of a varying dispersion parameter could improve
model fit (4, 21–27).

Another extension is to assume that the error term in the NB model
follows a normal distribution instead of a gamma distribution. Mod-
els of the resulting structure are known as Poisson lognormal (PLN)
models. Such models are good for accident rates with heavier tails
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Road safety is a source of significant concern for transportation offi-
cials and researchers. According to a World Health Organization
report, about 1.2 million people are killed on roads worldwide each
year, and as many as 50 million are injured. Continuation of this
trend will make road accidents the third-largest cause of injuries
worldwide by 2020 (1). Road accidents also result in high social
costs. A report by Transport Canada estimates that the annual societal
cost due to vehicle collisions exceeds $18 billion in the province of
Ontario, Canada, alone (2). Significant resources have been allocated
to various safety improvement programs involving engineering,
education, and reinforcement solutions.

Development of cost-effective safety programs entails two impor-
tant processes: identification of high-risk locations in the network of
interest and development of cost-effective countermeasures. Both
processes require accident models that can be used to predict and
explain accident occurrences through various explanatory factors
related to road geometry, vehicle and driver characteristics, weather,
and road conditions.
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(25, 28). Moreover, multivariate Poisson lognormal models account
for both overdispersion and general correlation structure among col-
lision outcomes (8, 29)—for example, correlation among collision
categories such as fatal and severity collision counts. This model, in
a Bayesian framework, has been extended to account for spatial and
temporal correlation among observations. Among previous work deal-
ing with temporal or spatial correlations are that of Lord and Persaud
(30), Song et al. (31), Aguero-Valverde and Jovanis (32), and Quddus
(33). More recently, El-Basyouny and Sayed used multivariate mod-
els for accident severity and frequency modeling because of these
models’ ability to account for overdispersion and correlation, which is
present across different levels of severity (8). Lenguerrand et al. pro-
posed a hierarchical correlated structure for crashes to model severity
with three levels: crash, car, and occupant (34). Jones and Jorgensen
used multilevel models for accident severity analysis (35).

In addition to the spatial, temporal, and among-outcomes cor-
relations, modeling approaches have been proposed to deal with
other statistical issues, such as underdispersion, underreporting
problems, selection bias (endogeneity), omitted-variables bias, and
segmentation (29).

In the traffic safety literature, despite the various issues and pro-
posed modeling approaches, most existing models are single level
and calibrated with aggregate data (e.g., by month, year, or multiyear
periods). These models assume that noncorrelation exists between
disaggregate observations (36). This assumption could easily become
questionable for many accident data sets that are commonly collected
over consecutive periods at the same locations. In these data sets,
observations are often clustered in a hierarchical or multilevel fash-
ion with individual observations nested within groups—not neces-
sarily in the form of panel data. In this situation, observations within
a group are more likely to have some degree of correlation than are
those out of the group (37 ). In addition, some temporal trends can
exist. Single-level models ignore the potential within-period varia-
tions and the nested effect caused by the repetition of observations
belonging to the same locations. This can result in the loss of variabil-
ity and potentially important explanatory information. For instance,
in investigations of the impact of weather (precipitation and temper-
ature) and winter maintenance operations on safety, the variations
of weather variables over short periods (hours or days) is likely to
be highly influential in generating crashes. Model outcomes can be
biased as a result of variations in the data that are not considered. This
problem was discussed by Lord and Mannering (29) and Washington
et al. (38). Despite the importance of this issue, very little empirical
evidence exists on the data aggregation effect, possibly because of the
lack of disaggregate accident and traffic-related data.

The multilevel structure and aggregation problem has been rec-
ognized in other studies. Jones and Jorgensen (35) and Lenguerrand
et al. (34) were among the first to recognize the need to consider the
hierarchical crash–car–occupant structure of accident data for crash
severity modeling. They discussed the potential issues of ignoring
the clustering nature of data and the correlation within the clusters,
such as erroneous estimates of model coefficients and understated
standard errors and confidence intervals for the effects. Their con-
clusions were similar to those in other disciplines, such as epidemi-
ology, social research, and political science (3, 39–41). However,
both studies focused only on the data structure for severity.

This research attempts to extend previous studies to evaluate the
effect of data aggregation and determine the best approach to repre-
sent the multilevel structure of the data. This will increase understand-
ing of the implications of aggregating data, ignoring the correlations
and time trends in the disaggregate data. This is done by using a
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unique hourly data set with totally disaggregated data of accidents,
traffic, weather, and winter maintenance operations in several highway
sections in Ontario, Canada.

DATA DESCRIPTION

Data used for this study were used previously with some minor
modifications (4, 5). Details of study sites, data sources, and their
processing are given in the following sections.

Study Sites and Data

Well-instrumented study sites were selected so that detailed data on
all major factors of interest are available. Four patrol routes were
selected, two on Highway 401 and two on Queen Elizabeth Way
(QEW) in the province of Ontario, Canada (4, 5). These are major
interurban freeways with multiple lanes in each direction and annual
average daily traffic of from 100,000 to more than 400,000. The
routes were as follows:

• 401-R1, Highway 400 to Morningside Avenue (28.0 km);
• 401-R2, Trafalgar Road to Highway 400 (31.1 km);
• QEW-R1, Burloak Drive to Erin Mills Parkway (17.4 km); and
• QEW-R2, Erin Mills Parkway to Eastmall (13.1 km).

All relevant data originated from five data sources. The first source
was hourly traffic data obtained from loop detectors. The second
source was accident data, maintained by the Ontario Provincial Police.
These data contained detailed information on each collision, includ-
ing accident time, accident location, accident type, impact type, sever-
ity level, vehicle information, and driver information. The third source
of data was road condition and weather information system (RCWIS).
This data source contained information about road surface conditions
(RSC), maintenance operations, precipitation type and accumulation,
visibility, and temperature. RCWIS data are collected by Ontario
Ministry of Transportation (MTO) maintenance personnel, who patrol
the maintenance routes three or four times during a storm event on
average. The fourth source of data was the road weather information
system (RWIS). This data source contained information about tem-
perature, precipitation type, visibility, wind speed, road surface con-
ditions, and so forth, recorded by RWIS stations near the selected
maintenance routes. All these data were obtained from MTO. The
last source of data was obtained from Environment Canada (EC).
Data from EC included temperature, precipitation type and intensity,
visibility, and wind speed.

Modeling of RSC

MTO reports RSC by using qualitative descriptions, that is, a categor-
ical measure (with seven major categories and 160 subcategories).
These categories have intrinsic ordering for severity, which means
that a more sensible measure would be an ordinal one. Although
binary variables could be used to code ordinal data, this would mean
loss of information on the ordering. Therefore, an interval variable
was used to map the RSC categories and at the same time to make
sure that the new variable would have physical interpretations. Road
surface condition index (RSI), a surrogate measure of the commonly
used friction level, was therefore introduced to represent various
RSC classes described in RCWIS. A friction surrogate was used



because there a number of field studies on the relationship between
descriptive road surface conditions and friction provided a basis for
determination of boundary friction values for each category. To map
the categorical RSC into RSI, the following procedure was used:

1. The major classes of road surface conditions, defined in RCWIS,
were first arranged according to their severity in an ascending order
as follows:

This order was also followed when sorting individual subcat-
egories in a major class.

2. RSI was defined for each major class of road surface state
defined in the previous step as a range of values based on the litera-
ture in road surface condition discrimination using friction measure-
ments (42–45). For convenience of interpretation, RSI is assumed
to be similar to road surface friction values and thus varies from 0.1
(poorest, e.g., ice covered) to 1.0 (best, e.g., bare and dry).

3. Each category in the major classes was assigned a specific RSI
value. For this purpose, subcategories in each major category were
sorted according to Step 1. Linear interpolation was used to assign
RSI values to the subcategories.

RSI values for major road surface classes are as follows:

Road Surface Condition RSI Range

Bare and dry 0.9∼1.0
Bare and wet 0.8∼0.89
Slushy 0.71∼0.79
Partly snow covered 0.5∼0.7
Snow covered 0.30∼0.49
Snow packed 0.2∼0.29
Icy 0.05∼0.19

Data Processing

Data from five sources for the winter seasons of 2003 to 2006 were
used in this study, all of which have different formats and needed to
be preprocessed for merging and integration. Accident data were
available as event records and therefore needed to be aggregated
into hourly records by totaling the accidents that occurred within
each hour of the day. Other attributes associated with accidents were
averaged over each hour.

Weather data are from three sources: RCWIS, RWIS, and EC. All
data sources were converted to an hourly basis. Precipitation inten-
sity data from EC were available only as a daily total, which is the
water equivalent of the total precipitation amount for a day. The data
on precipitation type were used to determine the hours with and with-
out precipitation. The total daily precipitation was then uniformly
allocated to each hour of the hours with precipitation.

After all the data related to weather and road condition were con-
verted into the hourly format, they were fused into a single data set
on the basis of date and time. When multiple data were available for
a given field, priority was given to RCWIS and RWIS data over EC
data because these data sources are collected near the study sites and
therefore are considered to be more representative. Missing RSC
data from RCWIS were retrieved from accident data or RWIS data.
It was also assumed that the RSC at the hour right after a mainte-
nance treatment was done could be considered as partially snow
covered. This data field was then subsequently linearly interpolated

bare and dry bare and wet slushy partly snow cove< < < rred

snow covered snow packed icy< < <
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for hourly conditions, as discussed in the following section. This
produced values of RSCs for all hours over individual storms. If any
data were missing for temperature, precipitation, or wind in RCWIS,
data from RWIS or EC data were used. This process resulted in a
single weather data set based on hour.

In the next step, winter storm events were identified, and a data set
called hourly based data (HBD), was formed by extracting hourly
events. These hourly events were then aggregated to generate an
event-based data set (EBD) through combination of the hourly data
of the same events. The events were defined on the basis of not only
weather conditions but also of road surface conditions. This approach
differs from other event-based studies, in which events are defined
on the basis of environmental data alone (46). Each event was defined
with the following constraints (4):

• An event starts when snow or freezing rain is observed.
• An event ends when snow or freezing rain stops and a certain

predefined road surface condition is achieved after that time.
• Precipitation must be greater than zero (0 cm/h).
• Air temperature must be less than 5°C.
• The RSI value must not be equal to bare dry conditions.

A total of 883 events were extracted with 483 accidents.

MODEL DEVELOPMENT

The most commonly used approach for modeling accident frequen-
cies is the regression analysis for count data. In particular, the NB
model and its extensions have been found to be the most suitable
distribution structures for road accident frequency (19, 22, 24, 25).
In earlier research, it was shown that GNB models have a better fit
to the data described in the previous section (4). The GNB model is
therefore used as a basis for this research.

Following the GNB model framework, let Yi ∼ Poisson (θi) with
ln(θi) = µi + �i, where Yi represents the number of accidents during
event or hour i (i = 1, . . . , n), µi is the mean accident frequency at
event i, and exp(�i) ∼ gamma(1/αi, 1/αi), where αi is the overdisper-
sion parameter. The mean accident frequency (µi) is then assumed
to be a function of a set of covariates through the log link function
commonly used in the road safety literature, that is,

where (xi1, . . . , xipk) is the jth attribute associated with event and hour
i at patrol p, Exposure is as defined in the section on exploratory data
analysis, and (β0, β1, . . . , βk) is a vector of regression parameters. In
GNB, the dispersion parameter is assumed to be a function of a set
of covariates. With an exponential link function, αi = exp(γ0 + γ1zi1 +
γ2zi2 + . . . + γkzim), where (zi1, . . . , zim) is a vector of event and hour-
specific factors that may be different from those explaining µip and
(γ0, γ1, . . . , γm) is a vector of parameters.

The second model alternative considered in this research is the
PLN model. The PLN differs from the NB model in that instead of
gamma distributed error, a lognormal distributed error term is added
to the Poisson model to capture the unobserved heterogeneity. This
model has the advantage that it can be extended to deal with multi-
level data sets. The multilevel model structure is necessary because
the disaggregate data set is longitudinal with the hourly records within
each storm event forming a set of repeated measures over time. This
is different from panel data with the number of periods being constant
for each location. The potential within-storm correlation can then be

μ β β β ββ
i i i i k ikx x x= ( ) + + + +exposure 1

0 2 1 3 2exp . . .(( ) ( )1



captured with a multilevel model (5, 25). Moreover, the lognormal
tails are known to be asymptotically heavier than those of the gamma
distribution (28). This can be the case when working with a data set
in the presence of outliers (47 ).

In a multilevel setting, a PLN model for nested hourly observations
at the event level can be represented as

where

θim, µim = number and mean number of accidents in an hour i
belonging to or nested in the storm event m;

γm = patrol route-level random effect, following a normal
distribution, that is, γm ∼ N(0, τ2); and

�im = model error also normally distributed, �im ∼ N(0, ζ).

�im represents all the unobserved heterogeneities or random varia-
tions that are not captured by γm, and γm represents event-level unob-
served factors controlling for the potential within event correlation.
In this case, the equation for the mean accident frequency has the
following functional form:

where m is an index indicating the event level and i the hour index.
The random term in Equation 3 accounts only for the random effect

on the intercept. A more complex extension would consider the ran-
dom effects in the slopes, that is, the slopes could be assumed to vary
by events. This variation is left for future investigation.

To measure the intraclass correlation (correlation among obser-
vations within the same storm event), the intraclass correlation coef-
ficient (ICC), denoted by ρ, is used. This coefficient is computed on
the basis of the variance components of model defined previously
and ranges from 0 to 1. If all hourly accident count observations are
independent of one another, ρ = 0. ρ ≠ 0 implies that the observa-
tions are not independent, for example, ICC > 0 implies that the
accident occurrence in the same storm is influenced by similar unob-
served storm factors. In this case, for the two-level model defined in
Equation 2, intracorrelation between accident count observations
coming from the same storm (denoted ρp) is obtained as (40)

In this paper, only four models are considered:

1. Event-based GNB model using EBD,
2. Hourly multilevel GNB using HBD,
3. Hourly multilevel PLN using HBD, and
4. Hourly single-level PLN using HBD.

The first two models are used to investigate the effects of data
aggregation, and the third and fourth are used to examine the impli-
cation of ignoring data correlation. STATA version 9 is used to
calibrate all models.

Exploratory Data Analysis

Box plots of individual data fields and correlation among variables
were used to check data sets for any outliers. A number of two-way

ρ τ
ζ τm im i mY Y= ( ) =

+′cor , ( )2

2

4
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im m i m i m kx x= ( ) + + + +0 2exposure 1

1 3 2exp . . . xxikm( ) ( )3

Yim im im im m im∼ Poisson withθ θ μ γ( ) ( ) = + +ln ( )� 2

Usman, Fu, and Miranda-Moreno 147

interactions were considered for some of the variables. These inter-
action terms were identified on the basis of some possible physical
interpretation.

A correlation analysis was carefully conducted for each individ-
ual and combined data set. As suspected, it was found that precipi-
tation type and maintenance operations were consistently correlated
with RSI (with a correlation coefficient greater than .60) and were
therefore excluded from further analysis. Descriptive statistics are
presented in Table 1 for the variables found to be significant.

An exploratory analysis of disaggregate data indicated a possible
trend in the observed collisions over individual storms. To statistically
test this observation, four models with different trend forms were
tested, although only three are listed: a model without a trend, a model
with a linear trend component, and a model with a dummy variable
indicating if the hour is the first or second hour of the storm (after
other variations of time indicators were considered), which was found
to be significant.

In both data sets, a dummy variable termed as a site-specific fac-
tor was included in the analysis to capture the possible effect on
road safety of other route-specific factors, such as location, driver
population, and road geometry.

Within-groups correlation is assessed with an ICC, which is cal-
culated as the ratio of within-group’s variance to total variance as
defined in Equation 4. Again, when ICC is close to 0, single-level and
multilevel models will have no difference in results. In this case, ICC
was calculated for the disaggregate data to confirm the presence of
correlation within events, which turns out to be 8% for this data set.

The following factors and variables were used in the analysis:

• Total number of accidents for the event or hour,
• Average wind speed (km/h) for the event or hour,
• Average air temperature (°C) for the event or hour,
• Average visibility (km) for the event or hour,
• Average RSI for the event or hour,
• Exposure—product of total traffic volume (sum of the hourly

traffic volumes of an event) during the event and segment length,
converted into millions of vehicle kilometers (for HBD analysis, this
was the product of segment length and hourly traffic, converted into
millions of vehicle kilometers),

• Precipitation intensity (cm/h),
• Hourly traffic volume,
• Site-specific variable (401-R1 = 1, 401-R2 = 2, QEW-R1 = 3,

and QEW-R2 = 4), and
• Storm stage—0 if first or second hour, 1 otherwise (for HBD

analysis only).

MODEL CALIBRATION AND RESULTS

The compiled data sets in STATA were used to calibrate the models
in this study. A stepwise elimination process was followed to iden-
tify the significant factors. Table 2 presents the calibration results,
and the major findings are summarized in the following.

Effects of Data Aggregation and Correlation

The event-based GNB model (using aggregated data) was compared
with the hourly based GNB to assess the effect of data aggregation.
Because the two models used data of different aggregation levels,
some commonly used quality-of-fit statistics such as the Akaike infor-
mation criterion (AIC) are not applicable (48). (The AIC statistic



is defined as −2LL + 2p, where LL is the log likelihood of a fitted
model and p is the number of parameters, which is included to penal-
ize models with higher number of parameters: a model with smaller
AIC value represents a better overall fit.) Nevertheless, the follow-
ing observations could still be made from Table 2 on the basis of
sample size and intuition:

• Because of data aggregation, some variables that are expected
to have a statistically significant effect on accident frequency could
become statistically insignificant. For example, precipitation inten-
sity and storm stage were both found to be significant in the hourly
GNB model with intuitively reasonable effect directions but were
proved to be insignificant in the event-based GNB model. This was
likely because of information lost to data aggregation.

• There are noticeable differences in the model coefficients for
those variables that are significant in both models, and for most vari-
ables the absolute values of the coefficients (size of effect) decreased
from the aggregated model to the disaggregated model. This pattern
of change in the model coefficients is a sign of the confounding
effect of some variables caused by data aggregation. For example,
the coefficient associated with RSI changed from −1.938 in the
hourly model to −2.724 in the event model, a 41% increase in effect
size. This increase could be caused by the confounding effects of
hourly precipitation and storm stage.

The effects of data correlation can be observed in the single-level
and multilevel PLN models calibrated with the hourly data. As shown
in Table 2, the models were quite similar in variables and the associ-
ated coefficients, possibly because correlation within events is not
very strong (49). However, the AIC statistics did show that the multi-
level PLN fitted the data slightly better than did the single-level model
(Table 2).
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Factors Affecting Winter Road Safety

In general, results from the models are consistent, as shown in
Table 2. Most results obtained in the research for winter road safety
and associated factors are consistent with those reported in the liter-
ature, with a few exceptions. The following specific observations are
made from the modeling outcomes:

• The most interesting result is that the RSI was found to be a sta-
tistically significant factor influencing road safety across all sites.
The negative sign associated to the factor suggests that higher acci-
dent frequencies are associated with poor road surface conditions.
This result makes intuitive sense and has confirmed the findings of
many studies (42, 50), mostly those in Nordic countries. However,
this research is the first to show the empirical relationship between
safety and road surface conditions at a disaggregate level, making it
feasible to quantify the safety benefit of alternative maintenance
goals and methods.

• Visibility was found to have a statistically significant effect on
accident frequency during a snowstorm. The negative model coef-
ficient also makes intuitive sense, suggesting that reduced visibility
was associated with more accidents. This result is different from those
in a previous statistical study (51), which used data from 37 sites and
found that visibility was significant only at two sites. That study con-
sidered collisions occurring at different roadways related to a single
weather station. This approach may have masked the effect of visi-
bility because of confounding of missing factors and large aggrega-
tion levels in both space (coastal areas versus inter cities) and time
(seasonal variation).

• As expected, exposure, defined as millions of vehicle kilometers
traveled (product of the total traffic volume over a storm event and
route length for aggregate data and product of the traffic volume per

TABLE 1 Descriptive Statistics

No. of 
Variable Observations Mean SD Min. Max.

Hourly Data

Accidents 6,551 0.07 0.31 0.00 4.00

Visibility (km) 6,551 11.08 8.22 0.00 24.10

Wind speed (km/hr) 6,551 16.30 10.25 0.00 59.00

Temperature (°C) 6,551 −4.36 5.06 −23.90 8.00

Precipitation (cm/h) 6,551 1.89 2.35 0.00 18.00

Road surface index 6,551 0.74 0.24 0.05 1.00

Hourly traffic 6,551 16,921 13,763 653 88,696

Lane exposure 6,551 −1.36 0.88 −4.69 0.63

Aggregate Data

Accidents 883 0.55 1.42 0.00 19.00

Visibility (km) 883 12.86 6.56 0.80 24.10

Wind speed (km/h) 883 16.38 9.46 0.00 50.00

Temperature (°C) 883 −3.29 4.35 −20.73 4.58

Hourly precipitation 883 1.63 1.64 0.04 12.40

Total precipitation 883 14.07 24.42 0.12 246.00

Road surface index 883 0.79 0.19 0.13 0.99

Hourly traffic 883 17,782 13,196 816 77,330

Lane exposure 883 0.38 1.13 −3.51 3.46

NOTE: SD = standard deviation; min. = minimum; max. = maximum.



hour and route length for disaggregate data), was found to be signifi-
cant, suggesting that an increase in traffic volume, storm duration,
or route length would lead to an increase in the number of accidents.
Inclusion of this term ensures that traffic exposure is accounted for
during estimation of the safety benefits of specific policy alternatives.
The coefficient associated with the exposure term has a value of less
than 1, suggesting that the moderating effect of exposure is nonlinear
with a decreasing rate. This result is consistent with those from road
safety literature (24, 30, 52–58).

• The model also suggests that when other factors (RSC, visibil-
ity, exposure) are controlled for, Highway 401 (401-R1 and 401-R2)
is more susceptible to crashes than is QEW (QEW-R1 and QEW-R2),
whereas the difference in risk between the two maintenance routes
on the same highway is quite small. The discrepancy between High-
way 401 and QEW needs further investigation; however, a possible
explanation is that Highway 401 has more interchanges per kilome-
ter than QEW, which is known to be an important factor influencing
freeway safety in general.

• In addition to exposure, hourly traffic was found to be signifi-
cant in the aggregate data analysis, suggesting that traffic variation
within events is an important factor in accidents.

• Air temperature was found to be significant only in the disaggre-
gate data analysis using PLN. This result confirms some previous finds
(59). The negative sign suggests that the mean number of accidents
will increase as temperature decreases.

• Precipitation was consistently found to be significant in all the
models when disaggregate data were used, and this confirms some
previous results (60). The positive sign suggests that the mean number
of accidents will increase with an increase in precipitation.

• The analysis confirmed the significance of a trend component
in road collisions for the duration of individual storms. Specifically,
it was found that the first 2 h of an event had a statistically higher col-
lision rate than the remaining hours of the event, which is consistent
with findings reported in the literature.

CONCLUSIONS AND FUTURE WORK

This paper provided empirical evidence about the effects of data
aggregation and correlation on disaggregated accident prediction
models. The analysis was conducted with a winter hourly accident
data set that had a hierarchical event-hour structure. The data set
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TABLE 2 Summary Results of Model Calibration

Aggregated Versus Disaggregated Multilevel Versus Single-Level

GNB Event-Based PLN Single-Level
Model GNB Hourly Model PLN Multilevel Model Model

Variable Coeff. Sig. Coeff. Sig. Coeff. Sig. Coeff. Sig.

Intercept 1.350 .002 −1.774 .000 −2.195 .000 −2.420 .000

Wind speed (km)

Temperature (°C) −0.021 .055 −0.015 .120

Visibility (km) −0.033 .003 −0.026 .000 −0.029 .000 −0.028 .000

Hourly precipitation 0.054 .018 0.049 .038 0.059 .008

Road surface index −2.724 .000 −1.938 .000 −1.875 .000 −1.854 .000

Hourly traffic −0.00005 .000

Lane exposure 0.686 .000 0.141 .019 0.186 .003 0.149 .013

S2E1 −0.546 .000 −0.499 .000 −0.560 .000

S2E2 0.000 0.000 0.000

401-R1 1.286 .000 1.993 .000 2.066 .000 2.002 .000

401-R2 0.644 .037 1.346 .000 1.549 .000 1.356 .000

QEW-R1 −0.147 .676 −0.114 .686 −0.097 .735 −0.097 .708

QEW-R2 0.000 0.000 0.000 0.000

Number of observations 883 6,551 6,551 6,551

LL (constant only) −802.919 −1,689.8

LL (model) −671.405 −1,581.2 −1,583.5 −1,585.3

AIC 1,370.81 3,190.42 3,189.05 3,192.56

Overdispersion Model

Intercept 3.503 .000 1.427 .069

Road surface index −2.932 .013 1.304 .067

Lane exposure −0.580 .002

401-R1 −2.114 .002 −2.261 .001

401-R2 −1.282 .049 −1.552 .031

QEW-R1 0.466 .514 −0.144 .874

QEW-R2 0.000 0.000

NOTE: Coeff. = coefficient; sig. = statistical significance; S2E1 and S2E2 are storm stage or trend factors, with S2E2 representing the first or second
storm hour and S1E1 others; LL = log likelihood.
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included hourly accident counts of all snowstorms that occurred dur-
ing the three winter seasons from 2003 to 2006 at four instrumented
freeway sections in Ontario, Canada.

1. The study showed that temporal aggregation of accident data
matters. Data aggregation that ignores data correlation could result
in loss of information and models of distorted risk factors and effect
size. Some important factors could turn out to be insignificant, whereas
they should be significant and would have been found significant if
the data were not aggregated. Also, effects of these insignificant
variables could be distributed to the significant variables, distorting
their parameter estimates.

2. The effect of data correlation for the specific data set used in
this study was found to be small with inconsequential differences in
significant factors and coefficients. A possible reason for this indif-
ference is that the event-level correlation in this data set is weak.
Thus, the conventional single-level models may be used for data with
weak or no within events correlation. Use of single-level models for
multilevel or hierarchical data with a large number of observations
can also prove to be time-efficient for analysis because multilevel
models are normally data intensive and are computationally expensive,
requiring much time for analysis (61). In case of high correlation,
however, multilevel models should be considered.

This analysis was carried out with data from only one type of
highway (urban freeway). Future efforts will concentrate on exam-
ining the validity of these findings across a wider spectrum of road
section locations.
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